El universo
Es la totalidad del espacio y del tiempo, de todas las formas de la materia, la energía, el impulso, las leyes y constantes físicas que las gobiernan. Sin embargo, el término también se utiliza en sentidos contextuales ligeramente diferentes y alude a conceptos como cosmos, mundo o naturaleza. Su estudio, en las mayores escalas, es el objeto de la cosmología, disciplina basada en la astronomía y la física, en la cual se describen todos los aspectos de este universo con sus fenómenos.
La ciencia modeliza el universo como un sistema cerrado que contiene energía y materia adscritas al espacio-tiempo y que se rige fundamentalmente por principios causales. Basándose en observaciones del universo observable, los físicos intentan describir el continuo espacio-tiempo en el que nos encontramos, junto con toda la materia y energía existentes en él.
Los experimentos sugieren que el universo se ha regido por las mismas leyes físicas, constantes a lo largo de su extensión e historia. Es homogéneo e isotrópico. La fuerza dominante en distancias cósmicas es la gravedad, y la relatividad general es actualmente la teoría más exacta para describirla. Las otras tres fuerzas fundamentales, y las partículas en las que actúan, son descritas por el modelo estándar.
La forma del universo
Desde la antigüedad el hombre se ha interesado por conocer como es el universo muchos han intentado encontrar las respuestas. Para el sabio griego Aristoteles, el universo era una esfera en la que se contenían todos los astros y era finito.
Los filósofos del siglo XVII,como Leibniz,creían que el universo era infinito. A partir de la formulación de la teoría de la relatividad de Einstein, en el siglo XX, se cree que el universo es finito, pero no tiene limites, ni centro como correspondería a un espacio curvo.
El origen del universo
El hecho de que el universo esté en expansión se deriva de las observaciones del corrimiento al rojo realizadas en la década de 1920 y que se cuantifican por la ley de Hubble. Dichas observaciones son la predicción experimental del modelo de Friedmann-Robertson-Walker, que es una solución de las ecuaciones de campo de Einstein de la relatividad general, que predicen el inicio del universo mediante un big bang.
El "corrimiento al rojo" es un fenómeno observado por los astrónomos, que muestra una relación directa entre la distancia de un objeto remoto (como una galaxia) y la velocidad con la que este se aleja. Si esta expansión ha sido continua a lo largo de la vida del universo, entonces en el pasado estos objetos distantes que siguen alejándose tuvieron que estar una vez juntos. Esta idea da pie a la teoría del Big Bang; el modelo dominante en la cosmología actual.
Durante la era más temprana del Big Bang, se cree que el universo era un caliente y denso plasma. Según avanzó la expansión, la temperatura decreció hasta el punto en que se pudieron formar los átomos. En aquella época, la energía de fondo se desacopló de la materia y fue libre de viajar a través del espacio. La energía remanente continuó enfriándose al expandirse el universo y hoy forma el fondo cósmico de microondas. Esta radiación de fondo es remarcablemente uniforme en todas direcciones, circunstancia que los cosmólogos han intentado explicar como reflejo de un periodo temprano de inflación cósmica después del Big Bang.
El examen de las pequeñas variaciones en el fondo de radiación de microondas proporciona información sobre la naturaleza del universo, incluyendo la edad y composición. La edad del universo desde el Big Bang, de acuerdo a la información actual proporcionada por el WMAP de la NASA, se estima en unos 13.700 millones de años, con un margen de error de un 1 % (137 millones de años). Otros métodos de estimación ofrecen diferentes rangos de edad, desde 11 000 millones a 20 000 millones.
Las galaxias
A gran escala, el universo está formado por galaxias y agrupaciones de galaxias. Las galaxias son agrupaciones masivas de estrellas, y son las estructuras más grandes en las que se organiza la materia en el universo. A través del telescopio se manifiestan como manchas luminosas de diferentes formas. A la hora de clasificarlas, los científicos distinguen entre las galaxias del Grupo Local, compuesto por las treinta galaxias más cercanas y a las que está unida gravitacionalmente nuestra galaxia (la Vía Láctea), y todas las demás galaxias, a las que llaman "galaxias exteriores".
Las galaxias están distribuidas por todo el universo y presentan características muy diversas, tanto en lo que respecta a su configuración como a su antigüedad. Las más pequeñas abarcan alrededor de 3000 millones de estrellas, y las galaxias de mayor tamaño pueden llegar a abarcar más de un billón de astros. Estas últimas pueden tener un diámetro de 170 000 años luz, mientras que las primeras no suelen exceder de los 6000 años luz.
Además de estrellas y sus astros asociados (planetas, asteroides, etc...), las galaxias contienen también materia interestelar, constituida por polvo y gas en una proporción que varía entre el 1 y el 10 % de su masa.
Se estima que el universo puede estar constituido por unos 100 000 millones de galaxias, aunque estas cifras varían en función de los diferentes estudios.
Clases de galaxias:
Galaxias elípticas
En forma de elipse o de esferoide, se caracterizan por carecer de una estructura interna definida y por presentar muy poca materia interestelar. Se consideran las más antiguas del universo, ya que sus estrellas son viejas y se encuentran en una fase muy avanzada de su evolución.
Galaxias lenticulares
Las galaxias de este tipo fueron en su momento galaxias espirales, pero consumieron o perdieron gran parte de materia interestelar, por lo que hoy carecen de brazos espirales y solo presenta su núcleo. Aunque a veces existe cierta cantidad de materia interestelar, sobre todo polvo, que se agrupa en forma de disco alrededor de esta. Estas galaxias constituyen alrededor del 3 % de las galaxias del universo.
Galaxias espirales
Están constituidas por un núcleo central y dos o más brazos en espiral, que parten del núcleo. Este se halla formado por multitud de estrellas y apenas tiene materia interestelar, mientras que en los brazos abunda la materia interestelar y hay gran cantidad de estrellas jóvenes, que son muy brillantes. Alrededor del 75 % de las galaxias del universo son de este tipo.
Galaxia espiral barrada
Es un subtipo de galaxia espiral, caracterizados por la presencia de una barra central de la que típicamente parten dos brazos espirales. Este tipo de galaxias constituyen una fracción importante del total de galaxias espirales. La Vía Láctea es una galaxia espiral barrada.
Galaxias irregulares
Incluyen una gran diversidad de galaxias, cuyas configuraciones no responden a las tres formas anteriores, aunque tienen en común algunas características, como la de ser casi todas pequeñas y contener un gran porcentaje de materia interestelar. Se calcula que son irregulares alrededor del 5 % de las galaxias del universo.
La via lactea
La Vía Láctea es nuestra galaxia. Según las observaciones, posee una masa de 1012 masas solares y es de tipo espiral barrada. Con un diámetro medio de unos 100 000 años luz se calcula que contiene unos 200 000 millones de estrellas, entre las cuales se encuentra el Sol. La distancia desde el Sol al centro de la galaxia es de alrededor de 27 700 años luz (8,5 kpc) A simple vista, se observa como una estela blanquecina de forma elíptica, que se puede distinguir en las noches despejadas. Lo que no se aprecian son sus brazos espirales, en uno de los cuales, el llamado brazo de Orión, está situado nuestro sistema solar, y por tanto la Tierra.
El núcleo central de la galaxia presenta un espesor uniforme en todos sus puntos, salvo en el centro, donde existe un gran abultamiento con un grosor máximo de 16 000 años luz, siendo el grosor medio de unos 6000 años luz.
Las estrellas
Son los elementos constitutivos más destacados de las galaxias. Las estrellas son enormes esferas de gas que brillan debido a sus gigantescas reacciones nucleares. Cuando debido a la fuerza gravitatoria, la presión y a la temperatura del interior de una estrella que sea suficientemente intensa, se inicia la fusión nuclear de sus átomos, y comienzan a emitir una luz roja oscura, que después se mueve hacia el estado superior, que es en el que está nuestro Sol, para posteriormente, al modificarse las reacciones nucleares interiores, dilatarse y finalmente enfriarse.
Al acabarse el hidrógeno, se originan reacciones nucleares de elementos más pesados, más energéticas, que convierten la estrella en una gigante roja. Con el tiempo, esta se vuelve inestable, a la vez que lanza hacia el espacio exterior la mayor parte del material estelar. Este proceso puede durar 100 millones de años, hasta que se agota toda la energía nuclear, y la estrella se contrae por efecto de la gravedad hasta hacerse pequeña y densa, en la forma de enana blanca, azul o marrón. Si la estrella inicial es varias veces más masiva que el Sol, su ciclo puede ser diferente, y en lugar de una gigante, puede convertirse en una supergigante y acabar su vida con una explosión denominada supernova. Estas estrellas pueden acabar como estrellas de neutrones. Tamaños aún mayores de estrellas pueden consumir todo su combustible muy rápidamente, transformándose en una entidad supermasiva llamada agujero negro.
La palabra «cuásar» es un acrónimo de quasi stellar radio source (fuentes de radio casi estelares). Se identificaron en la década de 1950. Más tarde se vio que mostraban un desplazamiento al rojo más grande que cualquier otro objeto conocido. La causa era el Efecto Doppler, que mueve el espectro hacia el rojo cuando los objetos se alejan. El primer cuásar estudiado, denominado 3C 273, está a 1500 millones de años luz de la Tierra. A partir de 1980 se han identificado miles de cuásares, algunos alejándose de nosotros a velocidades del 90 % de la de la luz.Los púlsares son fuentes de ondas de radio que emiten con periodos regulares. La palabra «púlsar» significa pulsating radio source (fuente de radio pulsante). Se detectan mediante radiotelescopios y se requieren relojes de extraordinaria precisión para detectar sus cambios de ritmo. Los estudios indican que un púlsar es una estrella de neutrones pequeña que gira a gran velocidad. El más conocido está en la Nebulosa del Cangrejo. Su densidad es tan grande que una muestra de cuásar del tamaño de una bola de bolígrafo tendría una masa de cerca de 100 000 toneladas. Su campo magnético, muy intenso, se concentra en un espacio reducido. Esto lo acelera y lo hace emitir gran cantidad de energía en haces de radiación que aquí recibimos como ondas de radio.
Se han descubierto cuásares a 12 000 millones de años luz de la Tierra; prácticamente la edad del universo. A pesar de las enormes distancias, la energía que llega en algunos casos es muy grande, equivalente a la recibida desde miles de galaxias: como ejemplo, el s50014+81 es unas 60 000 veces más brillante que toda la Vía Láctea.









